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Aperiodic stochastic resonance in a hysteretic population of cardiac neurons
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Aperiodic stochastic resonan¢ASR) is studied for a densely interconnected population of excitatory and
inhibitory neurons that exhibit hysteresis. Switching between states in the presence of noisy external forcing is
represented as a “competition between averages” and this is further explained through a semianalytical model.
In contrast to energy-based approaches where only the timing of a switch between states is represented, the
competition between averages also identifies the input history responsible for a switch. This last point leads to
some interesting conclusions regarding cause and effect in the presence of noisy forcing of a hysteretic system.
For example, at subthreshold inputs, it is found that the input history causing a switch between states is
primarily dependent upon the noise level even though the corresponding time to switch is sensitive to both the
distance from the threshold and the noise level. Since the application considered here is to cardiac neuronal
control, control performance is considered over the full input range. Noise tuning for adequate control perfor-
mance is found to be unnecessary if the noise level is high enough. This is consistent with studies of ASR for
sensory neurons. Another observation made here that may be of clinical significance is that at higher noise
levels, constraints placed upon inputs to ensure adequate control performance are likely to depend upon the
switching direction.

PACS numbd(ps): 05.40—a, 87.19.Hh

I. INTRODUCTION ence of noisy forcing, Kramers’s escape rgt€] may be
used to describe the escape statistics, allowing the construc-
The idea that a certain level of noise may enhance théion of an explicit approximation to the cross correlation be-
response of a system to low-amplitude, periodic signals hasveen input and outpyB]. This approach has been recently
been termed stochastic resonai8®). A good introduction extended[11] to a noisy forcing whose intensity is modu-
and literature review is available [2]. Recently, the gener- lated in terms of the input and output signals. In clinical
alization of SR to aperiodic stochastic resonatg&R) [3] investigations[8,12], coherence measures have been found
has been applied to physiological states where the responsseful to quantify the presence of ASR. Another application
to a low-amplitude, aperiodic, input signal is determined. of ASR has been to model the increased coherence observed
The analysis of SR and ASR has proceeded on two frontdbetween a noiseless, aperiodic input and the output of cha-
(i) First, unigue spectral features of the phenomenon aretic maps when a control parameter is varj&g].
found. Consider systems which react only to inputs which In this study ASR is characterized for hysteretic systems
cross a threshold. When such systems are forced by a subvth two stable states. A well-documented example is SR
threshold periodic input perturbed by noise, the noise crossespplied to the magnetization response of a bistable system to
the threshold in a periodic fashion. Thus, peaks in the outpua noisy, subthreshold periodic forcing exerted by an external
power spectrum are seen near integer multiples of the forcingnagnetic field sweep4]. The dynamics, in the presence of
period. There exists an optimum level of noise which maxi-noise, is modeled using an overdamped Langevin equation
mizes the response in the output power spectrum at the inputhere the statistics of switching between states is based upon
frequency[4,5] and thus results in a maximization of the a one-dimensional, double-welled Landau potential. ASR in
“signal to noise” ratio. For ASR, the cross correlation and a one-dimensional double-well potential is also developed in
variants[6—9] between a noisy subthreshold input and the[14] by extension of the approach used to study ASR in
output have been used to investigate the coherence betwesansory neuronfs3].
the input and output as a function of noise amplitude. This Although such systems are of generic interest, attention
coherence can also be maximized at a particular level ofvill be focused on a physiological problem: namely, the
noise(see[3] for a short review modeling of a population of excitatory and inhibitory neu-
(i) Second, energy models may be used to recast the symns which is densely interconnected in a redundant fashion
tem dynamics and this sometimes allows for analytical apso that the reduction may be made to a purely temporal
proximations to spectral features. For example, ASR hasiodel and input therefore to the group is “democratittie
been studied in the FitzHugh-Nagumo equati®5]. These same througholt Accumulating experimental evidence
equations are a canonical form useful for describing the redemonstrates that such populations exist in fatty tissues on
settable firing dynamics of an excitable system such as the surface of the heafL6—19. Neurons in such a popula-
sensory neuron. Here, the energy description represents, ipn are collectively referred to as “local circuit neurons”
analogy, the firing of a sensory neuron as the escape of [d6,18. A mathematical model is developed [i5] that
particle from a one-dimensional potential well. In the pres-shows that such a population is capable of hysteretic behav-
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- tion. Hence, a different formalism for the switching statistics
ey " UL is derived hergSec. IV). An interesting result arising as a
E < ] @ consequence is that switching statistics for SR and ASR in
e hysteretic systems is represented as competition between a
125 150 s 200 continuousrange of time averages. The expected time to
time (sec) switch is used to construct constraints on noise levels that are
S consistent with adequate control performance in Sec. V. The
2o ®) clinical relevance of both ASR and hysteretic local circuit
IE 7 neurons to regional cardiac function is also detailed in Sec.
2o | : V.
125 150 175 200
time (sec)

II. ANEURONAL POPULATION MODEL

FIG. 1. Neural activity levels, constructed from raw neural mea- The mathematical model for spatially localized popula-
surements taken from within a local circuit are depicted with righty;ons of neurons. introduced ii15), is briefly recapitulated
ventricular intramyocardial pressuf®VIMP) which is measured here. It assumes that a large population of excitatory and
within the heart wall tissue of the right ventricle. The neural activityi hibitory neurons is densely interconnected in a redundant
levels were formed as a 2-sec moving average of the raw neur g . P .
data which is sampled at 4000 Hz. The RVIMP shown here is the :%’pggésma anléjmtﬁtelgo?egﬂg\tlivc?ntrtf ZIIQJ‘?SSO{; r;)]];:)(t)r:zl Srgggzll

difference between the peak and minimum pressures during ea he or rtion of cell tiv ¢ unit time is ch n th
cardiac cycle(the peaks occurring about every 2 sec are due to € proportion of cells active per u € IS chosen as the

forced respiratory ventilation and three of these peaks are chpedrelevam neuronal Va“‘?‘b'e- Averaglng over refract_ory tlm_es
A chemical stimulant was applied to the epicardi(surface of the Ieads_to a coupled pair of first-order, nonlinear, differential
hear} at a time of 170 sec. An enduring shift in neural activity is €quations:

observed about 3-5 sec after this stimulation, closely followed by a

change in RVIMP. E
=—E+(ke—r¢E)Sc(c1E—col +R(1)),

te—7
dt
ior. Qualitative experimental evidence of hysteretic behavior (1)
found in local circuit neurons is depicted in Fig. 1 where dli
enduring shifts in neural activity are seen to occur some time t; Frinie [+ (ki—ril)Si(c3E—c4l +Q(1)).

after a population is subjected to a sufficient, approximately
constant input stimulus.

These local circuit neurons are important to cardiac conwhereE and| are the excitatory and inhibitory activity lev-
trol, since they interpret inputs from cardiac afferent neuron$ls, respectively. An “activity level” is the proportion of
and higher centers which provide necessary feedback to tHe€lls generating action potentials per unit timerhe neu-
heart[16,18. The importance of hysteresis is that multiple ronal time constants for the excitatory and inhibitory sub-
steady states in activity may be used by the local circuifPopulations aré. andt;, both taken to be 8 msec asl[itb].
neurons as a means to map inputs to appropriate outputs: fhe interaction between the subpopulations appears in the
other words, the heart is aactive participant in its own Second term on the right-hand sides. The rate of changg of
control. for example, is thus affected byk{—r.E), which can be

The activity generated by local circuit neurons is influ- thought of as the total number of nonrefractory cells, 8pd
enced by many afferent neuronal inputs from the heart an#hich can be thought of as the fraction of those cells that can
elsewhere that, not surprisingly, display fast “noisy” fluc- generate action potentials. In fact, these terms have units of
tuations superimposed on slower “deterministic” variationstime multiplied by the activity level and time inverse, respec-
[20]. In light of ASR, a guestion that is relevant to experi- tively, and so the association with “numbers of cells” is
mental design, data analysis, and understanding the clinicglualitative only.S, is a sigmoidal response functidsy(x)
role of cardiac local circuit neurons is, what is the functional=1{1+ex —a/X— 0 [}— 111+ exp@ebe)] and 0<S,<k,
role of fast “noise” fluctuations? <1. In [15] the maximum fractionk,= S() was intro-

The simplest model for local circuit neuronal function is duced for the analytic simplicity that results when rescaling
that developed if15] and outlined here in Sec. Iithis  Sg(°) to unity is avoided.
model was previously applied to the study of local circuit The net input tdS, is ¢;E— c,l +R(t). This is the sum of
neurons in[21] but in a different context Unlike previous local subpopulation interactions,E—c,l and an external
SR and ASR studies where only subthreshold inputs are connput, or forcing,R(t). An important feature of this model is
sidered, the relationship between control and hysteresis ithe interaction that occurs between the subpopulations of
the presence of noisgec. Ill) needs to be examined over neurons as a result of the feedback contained in the inputs to
the full range of inputs in order to evaluate cardiac controlthe subpopulation response functioSs and S;. For ex-
performance. Energy descriptions have been used to cast thenple, increased activity in the excitatory subpopulaton
statistics of switching in the presence of noise into a raterovides negative feedback to the same subpopulation since
competition between several timéer example, these times the inhibitory subpopulation is excited simultaneously. This
have been related if¥] to potential well geometjy How-  interaction between excitatory and inhibitory cells provides
ever, the neuronal population modéb] requires a difficult  dynamical stability consistent with that observed in the ex-
and somewhat cumbersome two-dimensional energy descriperimental setting15].
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0.5¢ infinity, the time to switch from State 1 to State 2 is reduced
monotonically from infinity to the order of the time constants
te andt; (taken here to bé.=t;=8 msec, as if15]).

Another way of looking at the switching is to define a
thresholdp(7), above whichR(t) must remain for timer in
order to result in a state switch within time More specifi-
cally, if R(t)=p(7) [p(7) constan} from time t=0, then
switching will occur at timet=r. Clearly p(7) is just the
inverse of 7(R). An expression fop(7) can be found nu-
merically from Eq.(1) by forcing them with constariR(t),
with Q(t)=0, and measuring switching times.

0.4f

0.3f

0.2f

0.1f

Aperiodic forcing model

-0.1— f : i ] The relationship between continuous, aperiodic, external
R forcing, R(t) and Q(t), and the output from a localized
population of neurons modeled by Ed) can be simplified
FIG. 2. The steady-state solutioiis(solid line) and | (dash- by assuming that the forcin@(t), applied to the inhibitory
dottgd ling, of Eq. (1) are shown as a function of a constant input neurons, is a function of the forcing(t) applied to the
forcing R. The parameters am =12, =4, ¢3=13, C4=11, 8. gygitatory neurons, i.e.Q(t)=Q(R(t)). This produces a
e s e s s I e s yperess curve dependent on oly on varabe,rthe har
i e - ) YWo. Utilizing this assumption, the hysteresis curves continue
in Fig. 5 of [15]. The time(seg to switch from State 1E and| S g
. . to exhibit the same features as those seen in Fig. 2 when the
approximately zerpto State 2 E~0.5 andl ~0.2) is 715(R) (dot- d d Ris af least ‘matel toni
ted ling@ and in the reverse direction is,(R) (dashed ling ependence o onRis a €ast approximately monotonic
andQ(0)=0 [15]. These requirements are not necessary, but
are physically reasonable. Under these assumptiQis)
=0 will be used throughout the remainder of the paper for
Hysteresis is useful in closed loop control where the inputonvenience.
is to be mapped to a finite number of output states, each of The forcing functionR(t) is now expressed as being
which leads to an appropriate control decision. The simplestade up of two parts: a deterministic “control” function,
case is that in which the output involves one of two statesR(t), and a mean zero random “noise” functierS(t),
This case can be considered without loss of generality since
multiple states can be viewed simply as combinations of R(t)zﬁ(t)+gs(t)_ )
state pairg22].
A hysteresis curve is shown in Fig. 2. In this figure,
steady state solutions of E¢L) are depicted throughout a N iddition, the following piecewise constant approximation
range of constant external forcimi®(t)=R. The parameters to R(t) is made:
of Eq. (1) are chosen such that there are only two “states,”
characterized by approximately constant valueg ahdl. In
addition, Q(t) is taken to be zero for convenience in this
solution—this restriction is discussed later. State 1 corre-
sponds toE and | both being approximately zero. State 2
occurs wherE~0.5 andl~0.2. If E and| are in State 1, ) o
then increasing the constant forciRgrom below the thresh-  WhereU(t)=0, t<0, U(t)=1, t=0, is the Heaviside step
old 0.3 to above 0.3 causes a change from State 1 to Statefgnction. The assumption implicit in this approximation is
after some time. Similarly, once in State 2, a reductiofRof that R(t) is slowly varying. More specificallyR(t) is as-
from above—0.4 to below—0.4 results in a change from sumed to operate at a time scale, #tin,—t;) much longer
State 2 to State 1 after some time. Hysteresis in the presentiean the neuronal time constants. The usefuless of a piece-
of noise allows for the robust selection of states, as noted iwise constant approximation is that the time to switching
[15], since it is somewhat resistant to state changes in theurve 7(R) can now be used directly to determine if switch-
range—0.4<R<0.3. ing will take place in any time intervél to t; ., under the
This robust selection is not, however, completely ad-external forcingR; . The switching time associated with each
equate for control since it is also necessary to react withevel R; and duratiort;, ; —t; is specified byr(R;) in Fig. 2:
sufficient rapidity to changing “essential” control require- switching will occur at some time in the interval whenever
ments. Hysteresis itself is a dynamicor kinetio  (t;.,—t)=7(R)).
phenomenon—the time required to change between states is It is important to note that the switching timgR;) is a
sensitive to the value of the constant forciRgThe dynamic  property of a neuron population. It is readily identified from
aspect is indicated in Fig. 2 where the timg(R) required  experimental evidence because a constant ifjuis the
to switch from State 1 to State [dr 7,4(R) in the other simplest forcing to experimentally apply and the time to
direction] is shown for a constant external forcif{t)=R  switch, 7(R;), is easily identified. Any combination & and
[23] For example, aR is increased from abol®=0.3 to | can be used to infer the switching time.

Ill. HYSTERETIC CONTROL

§<t>=i=20 Ri[U(t—t)—U(t—t;, ], 3)
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curves are obtained by simulation: 1000 realizationR ()

2r i
,,', y are input to the differential equatiof) and average switch-

! I
1.8r : ! “ . ll I
.'.;I N | f’;',';' ,'Il o ;' ing times plotted for each mean levg] and input variance
e HEHIRHE I ARAA: 0. It is clear that the expected time to switch states is sub-
145 :},:"I.‘; ;',‘l .",‘""’;’ i/ stantially reduced whew>0 for subthreshold—0.4<R;
E[Tpat /‘ ::;'. \ 3 :' ',,;,'[:,', /,"/,';I <0.3. Although not clear from Fig. 3, expected switching
o) | o=098 \ | ALY L A g /',’,/,' " times appear to be slightly increased for superthresRpks
T A ALY 0c0 o increases.
0.8 YA YR However, whenr is greater than zero, switchingliabil-
osl A ity also becomeseducedbecause the possibility afycling
' AN between states has been introduced. The cycling period is the
0.4r ,';/,,’,'//,/ X // sum of the expected times to go from State 1 to State 2 and
02k ,j’//,j/:’/,’ \ back from State 2 to State 1._ Since the constraints of gd-
Ty L L S equate control performance strike a balance between the time
0 Y Y 0 0z 0a 06 to switch and reliability, there will exist a range of pro-
R ducing optimum control.

Before considering more control aspects, it is useful first
FIG. 3. The expected time to switch from State 1 to State 2tg develop a more specific understanding of the results in

(solid lineg, E[T], is shown for curves of constantranging from Fig. 3 using an analytical model of the expected time to

0=0.1to 0=0.98 with steps ofr=0.04. The same is shown for gitch.

the reverse direction using dashed lines.

IV. HYSTERETIC CONTROL AND NOISE B. Competition between averages

) ) An analytical model for the expected time to switch can
In physical models, the external inputs to a neuronale geveloped by averaging Ed). In the remainder of this
population are typically accumulated from many SourceSge tion attention will be paid only to the switch from State 1
The most basic model for such inputs is a forcing function;y 5__entirely analogous mathematical developments can be
E(t), which has a slowly varying deterministic component .5 4e about the switch from State 2 to 1. FIEsE(t), 1w(t),
R(t) with superimposed noisy fluctuatiomesS(t). The latter R, (t), and Q\(t) are defined to be averages &ft),
act at, or faster, than the neuronal time constants, as disft), R(t), and Q(t), respectively, over the time interval
cussed above. To understand the role of noise in hysteretfgom t—\W to t (W is the averaging window widih For
control, the previous discussion of switching between stategxample,
in the absence of nois€Sec. lll) is generalized here to
switching in the presence of noisy inputs. For consistency, 1 [t
all results are computed using the same parameters used to RW(t):V_fowR(f)df' @)
produce Fig. 2.
Introduction of these averages transforms EL, to first
A. Expected switching time order,
Fast fluctuations superimposed on the mean iffuiver E
the intervalt; tot;, ; can lead to changes in state even within te_W: —Ew+ (Ke— I eEw) Se(C1Ew— Col w+ Ru(1)),
the subthreshold range 0.4<R;<0.3. Normally, in the ab- dt

sence of noise, switching will only take place in the super- " ()
threshold rangd;>0.3 or R;<—0.4. Within the interval; Wkt : _ n
to t;, 1, the noisy forcing is now taken to bR(t)=R; EinT lw (ki = rilw) S (CsBw— Calw Qu(t),

+oS(t) where the noise componels(t) is a stationary

Gaussian random process with zero mean, unit variance, af@r all t>W. As before, Q(t)=Q(R(t)) so that Qy(t)

exponentially  decaying correlation  function p(7) =Q(Rw(t)), to first order, and the averaged external forcing

=exp{—2|7/6}. The correlation scale of fluctuatio#, is set IS Ry(t) =R+ aSy(t). Itis assumed that all averaging takes

equal to the time constant of 8 msec to ensure that the noiggace within the time intervalt(,t;. 1), whereR; is constant.

is largely uncorrelated over times typically required toln particular, it is assumed that &(t)]—-0 as W

switch. In turn, this means that the noise itself is not, under— (t;;;—t;). Note that the subscriptv does not denote an

normal circumstances, interpreted as part of the control inexpectation—it is a local average. Even thougs(t)] is

put. zero, a realization of its finite local average will not, in gen-
Under this stochastic modet(R;) can be generalized to eral, equal zero. Howeve§,,(t) does have a reduced vari-

the expected switching timg&[ T] which is a function of the ance, as one would expect of an average, equal to

mean inputR; and the noise variance®. Wheno=0, the ) ;

switching time,T, becomes deterministic and equalidz;). B _ —owie

Expected switching times for various values @fare de- VatSw(h]=y(W) =g 1+ Wv(e -, ®

picted in Fig. 3 wherer=0 is the same result as Fig. 2 for

noiselessR(t). Figure 3 shows the expected time to switchwhered is the “scale of fluctuation,” taken here to equal the

from State 1 to State 2 and from State 2 to State 1. Théime constant of 8 msec. The “variance functiop(W) has
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1.5r

2.5¢r

E[T]
(sec)

0.5f

0.5F

0 0.1 0.2 0.3 04 0.5

FIG. 5. The dependence of the expected time to switch from
E[T], found from the differential equatior#) (solid lines, is com- State 1 to State 2 computed from the competition between averages.

pared to that using the “competition between averages” modell € Solid lines are the expected time to switch Ri>-0.3 and
(dashed lines dashed lines the same fBf<<0.3. Note the sharp change in depen-

dence uporr when crossingR;=0.3.

FIG. 4. The expected time to switch from State 1 to State 2

v(0)=1 and decreases lik¢f W for largeW, it quantifies the  switching times are again depicted in Fig. 5, but now for
variance reduction due to averaging. curves of constari; . Here, the effect on expected switching
The hypothesis made here is that the expected time ttmes from State 1 to State 2 arising from both the mean
switching under noisy external forcing can be written inlevel R; and the input variance is shown. The boundary be-
terms of the time to switching in the absence of noig®;).  tween sub- and superthreshold forcifiy=0.3, clearly de-
That is, switching in the presence of noise occurs at a time lineates the dependence of the expected time on the forcing
when any of the backwards averages from tirh¢o time t R; and the noise levaf. Curves corresponding to subthresh-
—W exceed9 (W), where 0<W<t and p(W) is the input old inputs,R;< 0.3, show a strong dependence uggnand
threshold which leads to a switch after tifd¢ In this sce- o while curves corresponding to superthreshold inp&s,
nario, imagine that each instant in tirhbas associated with >0.3, show very little dependence on
it a continuous suite of averages stretching back to time A semianalytical model for the expected switching time is
=0. If any of these averages exceeds its switching timenow developed by viewing the problem as follows: each in-
threshold, then switching will occur at tinieeach instant in ~ stant in timet>W is “composed” of a continuous sequence
time has a continuous range of local averagesW<t, of local averages extending backwards in time, one of which
from which to draw a “winning” threshold exceedance will be the local average of widthN. This component,
Rw(t)>p(W). Longer times have more contributing local viewed as a random function moving forward in time, has an
averages and, although longer local averages are “weakertipcrossing rate over a threshdie- p(W) — R; given by
competitors due to their smaller variances, they also have
lower barriers to exceed. As a result, local averages have —b?W
varying probabilities of exceedance, as a function of the av- v(W)= ex 20 |’
mN260W 2040
eraging width. Very small and very large averages tend to
have small exceedance probabilities, with increased probyhenWs> ¢ [24]. An “upcrossing” of the threshold would
abilities occurring at intermediate averaging widths. This isresult in a switch from State 1 to State 2. If upcrossings are
the competition between averages. assumed to béat least approximatelygoverned by a Pois-
This hypothesis is verified in Fig. 4 where the expectedson point process, then the tirfieto the first crossing of the

time to switch is computed via Monte Carlo simulation usingthresholdb, by the local average proceR§,(t), is given by
the differential equationgl) and compared to the expected

time to switch obtained via Monte Carlo simulatiusing a

different seell looking at backwards local averages and

p(W). Forcing to the differential equations is nearly white

noise, as discussed previously, superimpose®;orand so-  Since the width of the averaging window which leads to a

lutions are obtained using a fourth-order Runge-Kutta nuswitch is unknown and is thus treated as random, it is nec-

merical scheme. Any errors are numerically within the mag-essary to compute

nitude to be expected from a lack of resolution7¢R) for

R—o and r—«~. The agreement between the two ap- E[T]=E[E[T|W]]~f

proaches is startling. What this means is that the differential 0

equations are essentially integrators, accumulating sufficient

energy from the input until switching is achieved. + Jx (L) H(w)dw 9)
To motivate the analysis of switching times to follow, the >0\ V(W) ’

)

1
E[TIW]=W+ W) (8)

o

wH(w)dw
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Histogram: H(w;Ri=0.1 5, 6=0.35)
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16l _ Lognormal Fit: H(w;Ri=O.15, 0=0.35) 51
» Histogram: H(W;Ri=0.3, 6=0.35)

141 __. Lognormal Fit: H(w;R =0.3, 0=0.35) ar
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2 0 ‘ . ‘ . e
0 0.1 0.2 03 0.4 05 0.6 0.7

0 - - - . ‘ ) w (sec)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

FIG. 7. The window distribution foH(w;R;=0.15,6* =0.5) is
defined asJ(w) and rescaled as/o*J(ow/o*) (dashed ling
This is compared to the window distributioHd(w;R;=0.3, o
=0.1) (solid line).

FIG. 6. The histogram of the averaging window distribution
H(w;R; ,0), for switching from State 1 to State 2, is compared to
the log-normal distribution for two subthreshold values Ryf.

There is little variation itH(w;R; ,o) for the two values oR; . lead to switching. This property is shown in Fig. 7

whereH(w)=H(w;R;, o) is the probability density function These properties imply that it is only necessary to numeri-
of W, the averaging window width which causes switching.cally estimateH for one (nonzerg input noise variance, and
The second integral is only asymptotically correct. GenerthenH can be scaled to yield results at other variances, valid
ally, values of the lower bound on the integral ranging fromfor any R;< 0.3 to describe switching from State 1 to 2. The
56 to 100 have been found to yield reasonable results. agreement between this semianalytical formulation and the
This is another statement of the “competition betweenbackwards averaging model is shown in Fig. 8 for three dif-
averages.” Each averagR,(t) has a certain mean first ferent values oR;.
crossing time, and the likelihood that an average of widith For superthreshold inpu®;>0.3, H loses its nice prop-
is the one which leads to a swit¢barliest crossingis cap- erties. In particular, it becomes highly dependenRpand is
tured byH. The nature oH allows the identification of cause no longer (approximately self-similar with respect tas.
and effect—the amount of past inp(W) which leads to a However, it tends to be approximately normally distributed
switch is now probabilistically characterized, a feature notaroundr(R;), so that, to first order, a reasonable approxima-
available in energy models. The clinical relevance of thistion to the expected switching time is simgif T]= r(R;).
characterization appears later. In this case, the expected time to switch is approximately
A primary analytical difficulty is that no results appear to independent ofr because the functiop(7) is approaching a
be currently available foH. Hence, a numerical description vertical asymptote negr=0(1), where changes ip do not
is used to describe the propertiestoffor the subthreshold changer significantly.
range R;<0.3 along with values oftr such thatt,<E[T]
<10, of considerable practical interest. Simulation yields the
following observations. of
(i) H is closely approximated by a log-normal distribu-
tion. In fact, based on samples of size 500, the Anderson-
Darling goodness-of-fit test results in rejection of the lognor- 15
mal distribution only about 15% of the time at the 10%
significance levela 10% rejection rate would be expecked E[T]
Thus, it appears that the data are very nearly lognormally(sec)
distributed. This is also seen in Fig. 6 where the fitted log-
normal distribution is superimposed on the normalized his-
togram values.
(i) To first orderH is independent of the mean inpRt 05
and this is shown in Fig. 6. This lack of dependenceHof
uponR; is surprising in light of the strong dependence of the
time to switch on botiR; and the noise lever. The clinical 0
significance of this is pointed out in Sec. V.
(iii) The dependence d&f upono is (approximately self-
similar; i.e., if J(w)=H(w;R;,0*), then H(w;R;,0) FIG. 8. The expected time to switch from State 1 to State 2 from
=(olo*)I(ow/o*). This means that as the input noise the competition between averageslid lines is compared to the
varianceo? increases, the distributiod moves closer tav same predicted from the semianalytic model in E8). (dashed
=0, implying increased likelihoods that short averages willlines).
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V. CONTROL PERFORMANCE AND CLINICAL 1r
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RELEVANCE 0o} +TTOOO0000000000000000X X X X X X X
. +4+++0000000000000000 X x X X X X X X
. L. . . ++4++000000000000000X X X X X X X X X
The intrinsic cardiac nervous system contains three com-  o.8}f Iiiiii$888888888888x X X X X X X X X

. XX XXXXXXX

ponentq16,18: (i) afferent neurongfor feedback from car- 07l FHHH+++O0000000000% XX X X X X X X X
- +4+++++++++0000000X X X X X X X X X X X

diac tissug (ii) populations of densely interconnected exci- o6 1111111111288888% XX X XX X X XX X
. - . .61 XXXXXXXXXX
tatory and inhibitory neurongeach population forms a so- s iiiiiiiiiiiigggoxxxxxxxxxxxx
“ H SN L H H XXXXXXXXXXXXX
Ealled Ifocaldmtrcurl]t ; neurolns vlvlthm i local circuit hﬁ?\/e 0.5} PR 00000000000
“ ” s e 8 XXXXXXXXXXXX
een referred to here as “local circuit neurons, afiid) oab IIIiIiAaLAEILY X XX XXX XXX %
efferent neurons, which return control inputs back to the ++ttttt bttt e oo XXX X XXX XXX
’ R b 2 LTI XXX XX XX XX
heart, made up of parasympathetic efferent neuftmse- 0.3 iiii¢i++++o cre e e e XXXXXXXXX
i e S S S E S S A A e R N I I Y XX XXXX XX
duce cardiac outpytand sympathetic efferent neurofte 0.2} ++++++ii'.F ...... e e e XXXXXXX
increase cardiac outputThis nervous system, residing on ol B 0 G gofogodofe
the heart, modifies regional cardiodynamics and can functior ™ 5 S So oS0
independently of more centrally located neurdd3]. In- e T o T o ) 0z o o
deed, arbitrary rearrangements of small portions of local cir- R,
cuit neurons can lead to disorganized cardiac electrical be-
havior Whlcr_‘a In turn, can lead to ventricular fibrillatipR5]. FIG. 9. Control states depicted as a function of constant input
Hence, the |.ntr|n5|c_card|ac nervous system has been chararcing R, and noise levelr. Three states are considered: “sleep”
terized as dittle brain of the hear16,19. (dotg for inputs that do not result in a change of state, “active

In the simplest closed loop controller, cardiac afferentcontrol” (X's for 7, and +'s for 7,,) where control inputs result
neurons provide feedback to neurons in higher centers, sudh the desired change of state, and “no contrgidpen circles
as the spinal cord and brain, where more control inputs ar#@here control inputs result in uncontrolled cycling between states.
computed and fed back to the heart via the parasympathetic
and sympathetic efferent neurons. In addition, it is believede considered to have been achieved if 10% of the switching
that the intrinsic cardiac nervous system actively regulate§mes are excessively longwith obvious consequences
regional cardiac function via the local circuit neurons receiv-Knowledge of the switching rates and distributibinallows
ing inputs for instance, from the intrinsic cardiac afferentsuch probabilities to be assessed, although in this work only
neurong16,19. As discussed previously, these local circuit expected times are considered. It is assumed that adequate
neurons qualitatively exhibit hysteregigig. 1). limits on mean switching times will ensure adequate proba-
The usefulness of the description provided by ASR ofbilistic behavior, an assumption that requires more study to
local circuit neurons exhibiting hysteresis stems from thefully verify.
fact that it provides a means of dealing with the many noisy A simple rule which partially satisfies both of these ex-
inputs impinging on the intrinsic cardiac nervous systemjpected time requirements is that the time to switch should be
These inputs come from cardiac afferent neurons with sennuch smaller than the time to cycle. Figure 9 illustrates the
sory neurites in cardiac tissue and cardiac efferent pregangliarious control states as regions of a plot. The portion shown
onic neurons in higher centers. In such an environment, hyswith dots (-) corresponds to a “sleep’{passive control
teretic local circuit neurons serve to actively filter afferentstate where 1-2 and 2-1 switching times are both very large,
and higher center neuronal inputs by mapping them to @nd thus effectively infinite. In other words, the system is not
finite set of states before they modify the parasympathetideing driven. Directly above this region is a region marked
and sympathethic efferent neurons regulating regional cawith open circles, where the 1-2 and 2-1 switching times are
diac function. The importance of such filtering to maintain-both small so thatno contro) cycling is taking place. The
ing control in a noisy environment is intuitively clear—the noise is completely swamping any signal that might be
noise itself must not control the system. In fact, in addition topresent, and is strong enough to be interpreted as a determin-
filtering noise, hysteretic local circuit neuronse noise to istic signal by the controller. At the left, marked with's, is
increase the range of inputs available for regional cardiathe region where the 2-1 switching time is small, while the
control, including inputs that would otherwise be consideredl-2 switching time is effectively infinite. This is an active
subthreshold in the absence of noise. Thus, a broader dgontrol region. Similarly, the right hand side, marked with
namical range is available to regulate cardiac output viax’s, is where 1-2 switching occurs rapidly while the 2-1
changes in cardiodynamics. switching time is effectively infinite. This region also corre-
In a closed loop controller utilizing a hysteretic system,sponds to active control.
the main requirements placed upon the hysteretic portion, There are two major points of interest in Fig. 9. First of
consistent with good control performance are, qualitativelyall, noise levels in the range 0.4-0.5, allow for control over
(i) an expected time to switch states that does not exceed dhe full range of possible inputs, and there is no need for
upper limit, ensuring a rapid enough reaction to changingioise “tuning.” That is, the system does not need to actively
control requirements, an(i) an expected time to cycle be- adjust the noise level for optimum performance. This obser-
tween states that does not go below a lower limit, to suppresgation is consistent with similar findings for many sensory
unwanted cycling. neurons which are functionally in parallgl]. Second, at
Associated with these “expected time” requirements aresomewhat higher noise levels-£0.5), superthreshold con-
similar requirements on probability. For example, eventrol is not symmetrically jeopardized. For example, daf
though the expected time may be acceptable, control may net 1.0 andR;= 0.4, then “active” control is achieved and the
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system switches from State 1 to State 2. However, to returterms of the second. The noisy input problem was then de-
from State 2 to State IR; must be decreased down to less scribed in terms of the noise free problem via a “competition
than about- 0.6, which istwice as far from the correspond- between averages.” This occurred because of the averaging
ing upper threshold. Anything short of this results in a “no nature of the governing differential equations which essen-
control” state of erratic cycling. This point may be of clini- tially smooths the white noise input. A semianalytical model
cal significance if switching from State 1 to State 2 is takenwas developed to explain switching times in terms of the
to represent an increased activity level and State 2 to Statedompetition between averages and the probability distribu-
is a reduction in activity. The physical analogy would be thattion governing the averaging window responsible for a
increased activity is less susceptible to loss of control thaswitch in states was derived. Knowledge of this distribution
the return to a reduced level of activity. This phenomenornis clinically relevant as it may facilitate the assessment of
may be clinically applicable to the occurrence of a heartcause and effedthis is not available with more traditional
attack in an individual soon after the cessation of demandingnergy approachgs For example, although subthreshold
physical activity. switching times are dependent upon both the distance be-
Another clinically relevant issue arising out of this work tween the mean input and the switching threshold and the
is that neural inputs and outputs arising from a hysteretiégnput noise level, the mean averaging window size leading to
system can now be assessed for cause and effect. It is efvitching is dependent only on the noise level. In other
considerable interest to know just what change in neural inwords, cause and effect, at subthreshold inputs, may be de-
put results in a change in the output state, particularly whetermined solely by the noise level.
subthreshold inputs occur. This is a question that traditional ASR was applied here to further our understanding of the
energy methods are not designed to answer. In the modefffect of external noise on a densely interconnected popula-
presented here for expected time to switch &, informa-  tion of inhibitory and excitatory neurons that exihibits hys-
tion relating to cause and effect is contained in the probabilteresis. The specific application was to the intrinsic cardiac
ity density functionH. This function specifies a likely range nervous system. ASR predicts that, in this system, external
of averaging window widths which lead to a state changenoise can lead to an enhancement of the regulation which
So, for example, Fig. 6 implies that switching is a result ofintrinsic cardiac neurons exert on regional cardiac function.
inputs no more than about 0.15 sec into the past, with higlin addition, the ASR model predicts that the relationship
probability, and most likely due to inputs within about the between adequate control performance and noise is depen-
last 0.05 sec. In essence, the competition between averagedlisnt on the switching state direction when the noise is high.
identifying cause and effect via the probability density func-In fact, given an input at a fixed distance “beyond” a thresh-
tion H. This holds true at both subthreshold and superthresheld, adequate control may be realized when switching states
old levels of forcing. in one direction but lost in the reverse direction.
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