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Aperiodic stochastic resonance in a hysteretic population of cardiac neurons

G. C. Kember,1 G. A. Fenton,1 K. Collier,1 and J. A. Armour2
1Department of Engineering Mathematics, Dalhousie University, P. O. Box 1000, Halifax, Nova Scotia, Canada B3J 2X4

2Department of Physiology, Dalhousie University, P. O. Box 1000, Halifax, Nova Scotia, Canada B3J 2X4
~Received 9 July 1999!

Aperiodic stochastic resonance~ASR! is studied for a densely interconnected population of excitatory and
inhibitory neurons that exhibit hysteresis. Switching between states in the presence of noisy external forcing is
represented as a ‘‘competition between averages’’ and this is further explained through a semianalytical model.
In contrast to energy-based approaches where only the timing of a switch between states is represented, the
competition between averages also identifies the input history responsible for a switch. This last point leads to
some interesting conclusions regarding cause and effect in the presence of noisy forcing of a hysteretic system.
For example, at subthreshold inputs, it is found that the input history causing a switch between states is
primarily dependent upon the noise level even though the corresponding time to switch is sensitive to both the
distance from the threshold and the noise level. Since the application considered here is to cardiac neuronal
control, control performance is considered over the full input range. Noise tuning for adequate control perfor-
mance is found to be unnecessary if the noise level is high enough. This is consistent with studies of ASR for
sensory neurons. Another observation made here that may be of clinical significance is that at higher noise
levels, constraints placed upon inputs to ensure adequate control performance are likely to depend upon the
switching direction.

PACS number~s!: 05.40.2a, 87.19.Hh
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I. INTRODUCTION

The idea that a certain level of noise may enhance
response of a system to low-amplitude, periodic signals
been termed stochastic resonance~SR!. A good introduction
and literature review is available in@2#. Recently, the gener
alization of SR to aperiodic stochastic resonance~ASR! @3#
has been applied to physiological states where the resp
to a low-amplitude, aperiodic, input signal is determined.

The analysis of SR and ASR has proceeded on two fro
~i! First, unique spectral features of the phenomenon

found. Consider systems which react only to inputs wh
cross a threshold. When such systems are forced by a
threshold periodic input perturbed by noise, the noise cros
the threshold in a periodic fashion. Thus, peaks in the ou
power spectrum are seen near integer multiples of the for
period. There exists an optimum level of noise which ma
mizes the response in the output power spectrum at the i
frequency@4,5# and thus results in a maximization of th
‘‘signal to noise’’ ratio. For ASR, the cross correlation an
variants@6–9# between a noisy subthreshold input and t
output have been used to investigate the coherence bet
the input and output as a function of noise amplitude. T
coherence can also be maximized at a particular leve
noise~see@3# for a short review!.

~ii ! Second, energy models may be used to recast the
tem dynamics and this sometimes allows for analytical
proximations to spectral features. For example, ASR
been studied in the FitzHugh-Nagumo equations@3,5#. These
equations are a canonical form useful for describing the
settable firing dynamics of an excitable system such a
sensory neuron. Here, the energy description represent
analogy, the firing of a sensory neuron as the escape
particle from a one-dimensional potential well. In the pre
PRE 611063-651X/2000/61~2!/1816~9!/$15.00
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ence of noisy forcing, Kramers’s escape rate@10# may be
used to describe the escape statistics, allowing the cons
tion of an explicit approximation to the cross correlation b
tween input and output@3#. This approach has been recent
extended@11# to a noisy forcing whose intensity is modu
lated in terms of the input and output signals. In clinic
investigations@8,12#, coherence measures have been fou
useful to quantify the presence of ASR. Another applicat
of ASR has been to model the increased coherence obse
between a noiseless, aperiodic input and the output of c
otic maps when a control parameter is varied@13#.

In this study ASR is characterized for hysteretic syste
with two stable states. A well-documented example is
applied to the magnetization response of a bistable syste
a noisy, subthreshold periodic forcing exerted by an exter
magnetic field sweep@4#. The dynamics, in the presence
noise, is modeled using an overdamped Langevin equa
where the statistics of switching between states is based u
a one-dimensional, double-welled Landau potential. ASR
a one-dimensional double-well potential is also developed
@14# by extension of the approach used to study ASR
sensory neurons@3#.

Although such systems are of generic interest, atten
will be focused on a physiological problem: namely, t
modeling of a population of excitatory and inhibitory ne
rons which is densely interconnected in a redundant fash
so that the reduction may be made to a purely tempo
model and input therefore to the group is ‘‘democratic’’~the
same throughout!. Accumulating experimental evidenc
demonstrates that such populations exist in fatty tissues
the surface of the heart@16–19#. Neurons in such a popula
tion are collectively referred to as ‘‘local circuit neurons
@16,18#. A mathematical model is developed in@15# that
shows that such a population is capable of hysteretic beh
1816 ©2000 The American Physical Society
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PRE 61 1817APERIODIC STOCHASTIC RESONANCE INA . . .
ior. Qualitative experimental evidence of hysteretic behav
found in local circuit neurons is depicted in Fig. 1 whe
enduring shifts in neural activity are seen to occur some t
after a population is subjected to a sufficient, approximat
constant input stimulus.

These local circuit neurons are important to cardiac c
trol, since they interpret inputs from cardiac afferent neuro
and higher centers which provide necessary feedback to
heart @16,18#. The importance of hysteresis is that multip
steady states in activity may be used by the local circ
neurons as a means to map inputs to appropriate output
other words, the heart is anactive participant in its own
control.

The activity generated by local circuit neurons is infl
enced by many afferent neuronal inputs from the heart
elsewhere that, not surprisingly, display fast ‘‘noisy’’ flu
tuations superimposed on slower ‘‘deterministic’’ variatio
@20#. In light of ASR, a question that is relevant to expe
mental design, data analysis, and understanding the clin
role of cardiac local circuit neurons is, what is the function
role of fast ‘‘noise’’ fluctuations?

The simplest model for local circuit neuronal function
that developed in@15# and outlined here in Sec. II~this
model was previously applied to the study of local circ
neurons in@21# but in a different context!. Unlike previous
SR and ASR studies where only subthreshold inputs are
sidered, the relationship between control and hysteresi
the presence of noise~Sec. III! needs to be examined ove
the full range of inputs in order to evaluate cardiac cont
performance. Energy descriptions have been used to cas
statistics of switching in the presence of noise into a r
competition between several times~for example, these time
have been related in@4# to potential well geometry!. How-
ever, the neuronal population model@15# requires a difficult
and somewhat cumbersome two-dimensional energy des

FIG. 1. Neural activity levels, constructed from raw neural me
surements taken from within a local circuit are depicted with rig
ventricular intramyocardial pressure~RVIMP! which is measured
within the heart wall tissue of the right ventricle. The neural activ
levels were formed as a 2-sec moving average of the raw ne
data which is sampled at 4000 Hz. The RVIMP shown here is
difference between the peak and minimum pressures during
cardiac cycle~the peaks occurring about every 2 sec are due
forced respiratory ventilation and three of these peaks are clipp!.
A chemical stimulant was applied to the epicardium~surface of the
heart! at a time of 170 sec. An enduring shift in neural activity
observed about 3–5 sec after this stimulation, closely followed b
change in RVIMP.
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tion. Hence, a different formalism for the switching statisti
is derived here~Sec. IV!. An interesting result arising as
consequence is that switching statistics for SR and ASR
hysteretic systems is represented as competition betwe
continuousrange of time averages. The expected time
switch is used to construct constraints on noise levels that
consistent with adequate control performance in Sec. V.
clinical relevance of both ASR and hysteretic local circ
neurons to regional cardiac function is also detailed in S
V.

II. A NEURONAL POPULATION MODEL

The mathematical model for spatially localized popu
tions of neurons, introduced in@15#, is briefly recapitulated
here. It assumes that a large population of excitatory
inhibitory neurons is densely interconnected in a redund
way. This assumption allows the elimination of the spat
component and the reduction to a purely temporal mod
The proportion of cells active per unit time is chosen as
relevant neuronal variable. Averaging over refractory tim
leads to a coupled pair of first-order, nonlinear, different
equations:

te

dE

dt
52E1~ke2r eE!Se„c1E2c2I 1R~ t !…,

~1!

t i

dI

dt
52I 1~ki2r i I !Si„c3E2c4I 1Q~ t !….

whereE and I are the excitatory and inhibitory activity lev
els, respectively. An ‘‘activity level’’ is the proportion o
cells generating action potentials per unit timet. The neu-
ronal time constants for the excitatory and inhibitory su
populations arete andt i , both taken to be 8 msec as in@15#.
The interaction between the subpopulations appears in
second term on the right-hand sides. The rate of change oE,
for example, is thus affected by (ke2r eE), which can be
thought of as the total number of nonrefractory cells, andSe ,
which can be thought of as the fraction of those cells that
generate action potentials. In fact, these terms have unit
time multiplied by the activity level and time inverse, respe
tively, and so the association with ‘‘numbers of cells’’
qualitative only.Se is a sigmoidal response functionSe(x)
51/$11exp@2ae(x2ue)#%21/@11exp(aeue)# and 0<Se<ke
<1. In @15# the maximum fractionke5Se(`) was intro-
duced for the analytic simplicity that results when rescal
Se(`) to unity is avoided.

The net input toSe is c1E2c2I 1R(t). This is the sum of
local subpopulation interactionsc1E2c2I and an external
input, or forcing,R(t). An important feature of this model is
the interaction that occurs between the subpopulations
neurons as a result of the feedback contained in the inpu
the subpopulation response functionsSe and Si . For ex-
ample, increased activity in the excitatory subpopulationE
provides negative feedback to the same subpopulation s
the inhibitory subpopulation is excited simultaneously. Th
interaction between excitatory and inhibitory cells provid
dynamical stability consistent with that observed in the e
perimental setting@15#.
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III. HYSTERETIC CONTROL

Hysteresis is useful in closed loop control where the in
is to be mapped to a finite number of output states, eac
which leads to an appropriate control decision. The simp
case is that in which the output involves one of two stat
This case can be considered without loss of generality s
multiple states can be viewed simply as combinations
state pairs@22#.

A hysteresis curve is shown in Fig. 2. In this figur
steady state solutions of Eq.~1! are depicted throughout
range of constant external forcingR(t)5R. The parameters
of Eq. ~1! are chosen such that there are only two ‘‘state
characterized by approximately constant values ofE andI. In
addition, Q(t) is taken to be zero for convenience in th
solution—this restriction is discussed later. State 1 co
sponds toE and I both being approximately zero. State
occurs whenE'0.5 andI'0.2. If E and I are in State 1,
then increasing the constant forcingR from below the thresh-
old 0.3 to above 0.3 causes a change from State 1 to Sta
after some time. Similarly, once in State 2, a reduction oR
from above20.4 to below20.4 results in a change from
State 2 to State 1 after some time. Hysteresis in the pres
of noise allows for the robust selection of states, as note
@15#, since it is somewhat resistant to state changes in
range20.4,R,0.3.

This robust selection is not, however, completely a
equate for control since it is also necessary to react w
sufficient rapidity to changing ‘‘essential’’ control require
ments. Hysteresis itself is a dynamic~or kinetic!
phenomenon—the time required to change between stat
sensitive to the value of the constant forcingR. The dynamic
aspect is indicated in Fig. 2 where the timet12(R) required
to switch from State 1 to State 2@or t21(R) in the other
direction# is shown for a constant external forcingR(t)5R
@23# For example, asR is increased from aboutR50.3 to

FIG. 2. The steady-state solutionsE ~solid line! and I ~dash-
dotted line!, of Eq. ~1! are shown as a function of a constant inp
forcing R. The parameters arec1512, c254, c3513, c4511, ae

51.2, ue52.8, ai51, u i54, r e51, andr i51. The time constants
are te5t i50.008 sec. These parameters are the same as those
in Fig. 5 of @15#. The time~sec! to switch from State 1 (E and I
approximately zero! to State 2 (E'0.5 andI'0.2) ist12(R) ~dot-
ted line! and in the reverse direction ist21(R) ~dashed line!.
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infinity, the time to switch from State 1 to State 2 is reduc
monotonically from infinity to the order of the time constan
te and t i ~taken here to bete5t i58 msec, as in@15#!.

Another way of looking at the switching is to define
thresholdp(t), above whichR(t) must remain for timet in
order to result in a state switch within timet. More specifi-
cally, if R(t)5p(t) @p(t) constant# from time t50, then
switching will occur at timet5t. Clearly p(t) is just the
inverse oft(R). An expression forp(t) can be found nu-
merically from Eq.~1! by forcing them with constantR(t),
with Q(t)50, and measuring switching times.

Aperiodic forcing model

The relationship between continuous, aperiodic, exter
forcing, R(t) and Q(t), and the output from a localized
population of neurons modeled by Eq.~1! can be simplified
by assuming that the forcingQ(t), applied to the inhibitory
neurons, is a function of the forcingR(t) applied to the
excitatory neurons, i.e.,Q(t)5Q„R(t)…. This produces a
hysteresis curve dependent on only one variable, rather
two. Utilizing this assumption, the hysteresis curves contin
to exhibit the same features as those seen in Fig. 2 when
dependence ofQ on R is at least approximately monotoni
andQ(0)50 @15#. These requirements are not necessary,
are physically reasonable. Under these assumptions,Q(t)
50 will be used throughout the remainder of the paper
convenience.

The forcing functionR(t) is now expressed as bein
made up of two parts: a deterministic ‘‘control’’ function
R̄(t), and a mean zero random ‘‘noise’’ functionsS(t),

R~ t !5R̄~ t !1sS~ t !. ~2!

In addition, the following piecewise constant approximati
to R̄(t) is made:

R̄~ t !5(
i 50

`

Ri@U~ t2t i !2U~ t2t i 11!#, ~3!

whereU(t)50, t,0, U(t)51, t>0, is the Heaviside step
function. The assumption implicit in this approximation
that R̄(t) is slowly varying. More specifically,R̄(t) is as-
sumed to operate at a time scale, mini(ti112ti) much longer
than the neuronal time constants. The usefuless of a pi
wise constant approximation is that the time to switchi
curvet(R) can now be used directly to determine if switc
ing will take place in any time intervalt i to t i 11 under the
external forcingRi . The switching time associated with eac
level Ri and durationt i 112t i is specified byt(Ri) in Fig. 2:
switching will occur at some time in the interval whenev
(t i 112t i)>t(Ri).

It is important to note that the switching timet(Ri) is a
property of a neuron population. It is readily identified fro
experimental evidence because a constant inputRi is the
simplest forcing to experimentally apply and the time
switch,t(Ri), is easily identified. Any combination ofE and
I can be used to infer the switching time.
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IV. HYSTERETIC CONTROL AND NOISE

In physical models, the external inputs to a neuro
population are typically accumulated from many sourc
The most basic model for such inputs is a forcing funct
R(t), which has a slowly varying deterministic compone
R̄(t) with superimposed noisy fluctuationssS(t). The latter
act at, or faster, than the neuronal time constants, as
cussed above. To understand the role of noise in hyste
control, the previous discussion of switching between sta
in the absence of noise~Sec. III! is generalized here to
switching in the presence of noisy inputs. For consisten
all results are computed using the same parameters us
produce Fig. 2.

A. Expected switching time

Fast fluctuations superimposed on the mean inputRi over
the intervalt i to t i 11 can lead to changes in state even with
the subthreshold range20.4,Ri,0.3. Normally, in the ab-
sence of noise, switching will only take place in the sup
threshold rangeRi.0.3 or Ri,20.4. Within the intervalt i
to t i 11, the noisy forcing is now taken to beR(t)5Ri
1sS(t) where the noise componentS(t) is a stationary
Gaussian random process with zero mean, unit variance,
exponentially decaying correlation function r(t)
5exp$22utu/u%. The correlation scale of fluctuation,u, is set
equal to the time constant of 8 msec to ensure that the n
is largely uncorrelated over times typically required
switch. In turn, this means that the noise itself is not, un
normal circumstances, interpreted as part of the control
put.

Under this stochastic model,t(Ri) can be generalized to
the expected switching timeE@T# which is a function of the
mean inputRi and the noise variances2. Whens50, the
switching time,T, becomes deterministic and equal tot(Ri).
Expected switching times for various values ofs are de-
picted in Fig. 3 wheres50 is the same result as Fig. 2 fo
noiselessR(t). Figure 3 shows the expected time to swit
from State 1 to State 2 and from State 2 to State 1. T

FIG. 3. The expected time to switch from State 1 to State
~solid lines!, E@T#, is shown for curves of constants ranging from
s50.1 to s50.98 with steps ofs50.04. The same is shown fo
the reverse direction using dashed lines.
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curves are obtained by simulation: 1000 realizations ofR(t)
are input to the differential equations~1! and average switch
ing times plotted for each mean levelRi and input variance
s2. It is clear that the expected time to switch states is s
stantially reduced whens.0 for subthreshold20.4,Ri
,0.3. Although not clear from Fig. 3, expected switchin
times appear to be slightly increased for superthresholdRi as
s increases.

However, whens is greater than zero, switchingreliabil-
ity also becomesreducedbecause the possibility ofcycling
between states has been introduced. The cycling period is
sum of the expected times to go from State 1 to State 2
back from State 2 to State 1. Since the constraints of
equate control performance strike a balance between the
to switch and reliability, there will exist a range ofs pro-
ducing optimum control.

Before considering more control aspects, it is useful fi
to develop a more specific understanding of the results
Fig. 3 using an analytical model of the expected time
switch.

B. Competition between averages

An analytical model for the expected time to switch c
be developed by averaging Eq.~1!. In the remainder of this
section, attention will be paid only to the switch from State
to 2—entirely analogous mathematical developments can
made about the switch from State 2 to 1. First,EW(t), I W(t),
RW(t), and QW(t) are defined to be averages ofE(t),
I (t), R(t), and Q(t), respectively, over the time interva
from t2W to t (W is the averaging window width!. For
example,

RW~ t !5
1

WE
t2W

t

R~j!dj. ~4!

Introduction of these averages transforms Eq.~1!, to first
order,

te

dEW

dt
52EW1~ke2r eEW!Se„c1EW2c2I W1RW~ t !…,

~5!

t i

dIW

dt
52I W1~ki2r i I W!Si„c3EW2c4I W1QW~ t !…,

for all t.W. As before, Q(t)5Q„R(t)… so that QW„t)
5Q(RW(t)…, to first order, and the averaged external forci
is RW(t)5Ri1sSW(t). It is assumed that all averaging take
place within the time interval (t i ,t i 11), whereRi is constant.
In particular, it is assumed that Var@SW(t)#→0 as W
→(t i 112t i). Note that the subscriptW does not denote an
expectation—it is a local average. Even thoughE@S(t)# is
zero, a realization of its finite local average will not, in ge
eral, equal zero. However,SW(t) does have a reduced var
ance, as one would expect of an average, equal to

Var@SW~ t !#5g~W!5
u

WS 11
u

2W
~e22W/u21! D , ~6!

whereu is the ‘‘scale of fluctuation,’’ taken here to equal th
time constant of 8 msec. The ‘‘variance function’’g(W) has

2
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1820 PRE 61KEMBER, FENTON, COLLIER, AND ARMOUR
g(0)51 and decreases likeu/W for largeW; it quantifies the
variance reduction due to averaging.

The hypothesis made here is that the expected time
switching under noisy external forcing can be written
terms of the time to switching in the absence of noise,t(Ri).
That is, switching in the presence of noise occurs at a timt
when any of the backwards averages from timet to time t
2W exceedsp(W), where 0,W,t and p(W) is the input
threshold which leads to a switch after timeW. In this sce-
nario, imagine that each instant in timet has associated with
it a continuous suite of averages stretching back to timt
50. If any of these averages exceeds its switching ti
threshold, then switching will occur at timet; each instant in
time has a continuous range of local averages, 0,W,t,
from which to draw a ‘‘winning’’ threshold exceedanc
RW(t).p(W). Longer times have more contributing loc
averages and, although longer local averages are ‘‘weak
competitors due to their smaller variances, they also h
lower barriers to exceed. As a result, local averages h
varying probabilities of exceedance, as a function of the
eraging width. Very small and very large averages tend
have small exceedance probabilities, with increased p
abilities occurring at intermediate averaging widths. This
the competition between averages.

This hypothesis is verified in Fig. 4 where the expec
time to switch is computed via Monte Carlo simulation usi
the differential equations~1! and compared to the expecte
time to switch obtained via Monte Carlo simulation~using a
different seed! looking at backwards local averages a
p(W). Forcing to the differential equations is nearly whi
noise, as discussed previously, superimposed onRi , and so-
lutions are obtained using a fourth-order Runge-Kutta
merical scheme. Any errors are numerically within the ma
nitude to be expected from a lack of resolution oft(R) for
R→` and t→`. The agreement between the two a
proaches is startling. What this means is that the differen
equations are essentially integrators, accumulating suffic
energy from the input until switching is achieved.

To motivate the analysis of switching times to follow, th

FIG. 4. The expected time to switch from State 1 to State
E@T#, found from the differential equations~1! ~solid lines!, is com-
pared to that using the ‘‘competition between averages’’ mo
~dashed lines!.
to
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switching times are again depicted in Fig. 5, but now
curves of constantRi . Here, the effect on expected switchin
times from State 1 to State 2 arising from both the me
level Ri and the input variance is shown. The boundary b
tween sub- and superthreshold forcing,Ri50.3, clearly de-
lineates the dependence of the expected time on the for
Ri and the noise levels. Curves corresponding to subthres
old inputs,Ri,0.3, show a strong dependence uponRi and
s while curves corresponding to superthreshold inputs,Ri
.0.3, show very little dependence ons.

A semianalytical model for the expected switching time
now developed by viewing the problem as follows: each
stant in timet.W is ‘‘composed’’ of a continuous sequenc
of local averages extending backwards in time, one of wh
will be the local average of widthW. This component,
viewed as a random function moving forward in time, has
upcrossing rate over a thresholdb5p(W)2Ri given by

n~W!5
1

pA2uW
expH 2b2W

2s2u
J , ~7!

whenW@u @24#. An ‘‘upcrossing’’ of the thresholdb would
result in a switch from State 1 to State 2. If upcrossings
assumed to be~at least approximately! governed by a Pois-
son point process, then the timeT to the first crossing of the
thresholdb, by the local average processRW(t), is given by

E@TuW#5W1
1

n~W!
. ~8!

Since the width of the averaging window which leads to
switch is unknown and is thus treated as random, it is n
essary to compute

E@T#5E†E@TuW#‡'E
0

`

wH~w!dw

1E
@u

` S 1

n~w! DH~w!dw, ~9!

,

l

FIG. 5. The dependence of the expected time to switch fr
State 1 to State 2 computed from the competition between avera
The solid lines are the expected time to switch forRi.0.3 and
dashed lines the same forRi,0.3. Note the sharp change in depe
dence upons when crossingRi50.3.
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whereH(w)5H(w;Ri ,s) is the probability density function
of W, the averaging window width which causes switchin
The second integral is only asymptotically correct. Gen
ally, values of the lower bound on the integral ranging fro
5u to 10u have been found to yield reasonable results.

This is another statement of the ‘‘competition betwe
averages.’’ Each averageRW(t) has a certain mean firs
crossing time, and the likelihood that an average of widthW
is the one which leads to a switch~earliest crossing! is cap-
tured byH. The nature ofH allows the identification of caus
and effect—the amount of past input~W! which leads to a
switch is now probabilistically characterized, a feature n
available in energy models. The clinical relevance of t
characterization appears later.

A primary analytical difficulty is that no results appear
be currently available forH. Hence, a numerical descriptio
is used to describe the properties ofH for the subthreshold
rangeRi,0.3 along with values ofs such thatte!E@T#
!10, of considerable practical interest. Simulation yields
following observations.

~i! H is closely approximated by a log-normal distrib
tion. In fact, based on samples of size 500, the Anders
Darling goodness-of-fit test results in rejection of the logn
mal distribution only about 15% of the time at the 10
significance level~a 10% rejection rate would be expected!.
Thus, it appears that the data are very nearly lognorm
distributed. This is also seen in Fig. 6 where the fitted lo
normal distribution is superimposed on the normalized h
togram values.

~ii ! To first orderH is independent of the mean inputRi
and this is shown in Fig. 6. This lack of dependence ofH
uponRi is surprising in light of the strong dependence of t
time to switch on bothRi and the noise levels. The clinical
significance of this is pointed out in Sec. V.

~iii ! The dependence ofH upons is ~approximately! self-
similar; i.e., if J(w)5H(w;Ri ,s* ), then H(w;Ri ,s)
5(s/s* )J(sw/s* ). This means that as the input nois
variances2 increases, the distributionH moves closer tow
50, implying increased likelihoods that short averages w

FIG. 6. The histogram of the averaging window distributi
H(w;Ri ,s), for switching from State 1 to State 2, is compared
the log-normal distribution for two subthreshold values ofRi .
There is little variation inH(w;Ri ,s) for the two values ofRi .
.
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lead to switching. This property is shown in Fig. 7.
These properties imply that it is only necessary to num

cally estimateH for one~nonzero! input noise variance, and
thenH can be scaled to yield results at other variances, v
for anyRi,0.3 to describe switching from State 1 to 2. Th
agreement between this semianalytical formulation and
backwards averaging model is shown in Fig. 8 for three d
ferent values ofRi .

For superthreshold inputsRi.0.3, H loses its nice prop-
erties. In particular, it becomes highly dependent onRi and is
no longer ~approximately! self-similar with respect tos.
However, it tends to be approximately normally distribut
aroundt(Ri), so that, to first order, a reasonable approxim
tion to the expected switching time is simplyE@T#5t(Ri).
In this case, the expected time to switch is approximat
independent ofs because the functionp(t) is approaching a
vertical asymptote nearp5O(1), where changes inp do not
changet significantly.

FIG. 7. The window distribution forH(w;Ri50.15,s* 50.5) is
defined asJ(w) and rescaled ass/s* J(sw/s* ) ~dashed line!.
This is compared to the window distributionH(w;Ri50.3, s
50.1) ~solid line!.

FIG. 8. The expected time to switch from State 1 to State 2 fr
the competition between averages~solid lines! is compared to the
same predicted from the semianalytic model in Eq.~9! ~dashed
lines!.



om

ci-
-

th

n
tio

ci
b

r

n
u
a
e
e
te
iv
n

uit

o
th
is
m
e

ng
y
n
o
et
ca
in
e
to

ia
re

d
vi

m
io
ly
d
in
-

re

r
en
n

ing

nly
uate

ba-
to

x-
be

the
wn

ge,
ot

ed
are

be
min-

he
e
th
-1
-

of
er
for

ely
er-
ry

-

e

put
’’
ve
t

es.

1822 PRE 61KEMBER, FENTON, COLLIER, AND ARMOUR
V. CONTROL PERFORMANCE AND CLINICAL
RELEVANCE

The intrinsic cardiac nervous system contains three c
ponents@16,18#: ~i! afferent neurons~for feedback from car-
diac tissue!, ~ii ! populations of densely interconnected ex
tatory and inhibitory neurons~each population forms a so
called ‘‘local circuit’’; neurons within a local circuit have
been referred to here as ‘‘local circuit neurons,’’ and~iii !
efferent neurons, which return control inputs back to
heart, made up of parasympathetic efferent neurons~to re-
duce cardiac output!, and sympathetic efferent neurons~to
increase cardiac output!. This nervous system, residing o
the heart, modifies regional cardiodynamics and can func
independently of more centrally located neurons@17#. In-
deed, arbitrary rearrangements of small portions of local
cuit neurons can lead to disorganized cardiac electrical
havior which, in turn, can lead to ventricular fibrillation@25#.
Hence, the intrinsic cardiac nervous system has been cha
terized as alittle brain of the heart@16,19#.

In the simplest closed loop controller, cardiac affere
neurons provide feedback to neurons in higher centers, s
as the spinal cord and brain, where more control inputs
computed and fed back to the heart via the parasympath
and sympathetic efferent neurons. In addition, it is believ
that the intrinsic cardiac nervous system actively regula
regional cardiac function via the local circuit neurons rece
ing inputs for instance, from the intrinsic cardiac affere
neurons@16,19#. As discussed previously, these local circ
neurons qualitatively exhibit hysteresis~Fig. 1!.

The usefulness of the description provided by ASR
local circuit neurons exhibiting hysteresis stems from
fact that it provides a means of dealing with the many no
inputs impinging on the intrinsic cardiac nervous syste
These inputs come from cardiac afferent neurons with s
sory neurites in cardiac tissue and cardiac efferent prega
onic neurons in higher centers. In such an environment, h
teretic local circuit neurons serve to actively filter affere
and higher center neuronal inputs by mapping them t
finite set of states before they modify the parasympath
and sympathethic efferent neurons regulating regional
diac function. The importance of such filtering to mainta
ing control in a noisy environment is intuitively clear—th
noise itself must not control the system. In fact, in addition
filtering noise, hysteretic local circuit neuronsusenoise to
increase the range of inputs available for regional card
control, including inputs that would otherwise be conside
subthreshold in the absence of noise. Thus, a broader
namical range is available to regulate cardiac output
changes in cardiodynamics.

In a closed loop controller utilizing a hysteretic syste
the main requirements placed upon the hysteretic port
consistent with good control performance are, qualitative
~i! an expected time to switch states that does not excee
upper limit, ensuring a rapid enough reaction to chang
control requirements, and~ii ! an expected time to cycle be
tween states that does not go below a lower limit, to supp
unwanted cycling.

Associated with these ‘‘expected time’’ requirements a
similar requirements on probability. For example, ev
though the expected time may be acceptable, control may
-
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be considered to have been achieved if 10% of the switch
times are excessively long~with obvious consequences!.
Knowledge of the switching rates and distributionH allows
such probabilities to be assessed, although in this work o
expected times are considered. It is assumed that adeq
limits on mean switching times will ensure adequate pro
bilistic behavior, an assumption that requires more study
fully verify.

A simple rule which partially satisfies both of these e
pected time requirements is that the time to switch should
much smaller than the time to cycle. Figure 9 illustrates
various control states as regions of a plot. The portion sho
with dots (•) corresponds to a ‘‘sleep’’~passive control!
state where 1-2 and 2-1 switching times are both very lar
and thus effectively infinite. In other words, the system is n
being driven. Directly above this region is a region mark
with open circles, where the 1-2 and 2-1 switching times
both small so that~no control! cycling is taking place. The
noise is completely swamping any signal that might
present, and is strong enough to be interpreted as a deter
istic signal by the controller. At the left, marked with1 ’s, is
the region where the 2-1 switching time is small, while t
1-2 switching time is effectively infinite. This is an activ
control region. Similarly, the right hand side, marked wi
3 ’s, is where 1-2 switching occurs rapidly while the 2
switching time is effectively infinite. This region also corre
sponds to active control.

There are two major points of interest in Fig. 9. First
all, noise levels in the range 0.4–0.5, allow for control ov
the full range of possible inputs, and there is no need
noise ‘‘tuning.’’ That is, the system does not need to activ
adjust the noise level for optimum performance. This obs
vation is consistent with similar findings for many senso
neurons which are functionally in parallel@1#. Second, at
somewhat higher noise levels (s.0.5), superthreshold con
trol is not symmetrically jeopardized. For example, ifs
51.0 andRi50.4, then ‘‘active’’ control is achieved and th

FIG. 9. Control states depicted as a function of constant in
forcing Ri and noise levels. Three states are considered: ‘‘sleep
~dots! for inputs that do not result in a change of state, ‘‘acti
control’’ ( 3 ’s for t12 and1 ’s for t21) where control inputs resul
in the desired change of state, and ‘‘no control’’~open circles!
where control inputs result in uncontrolled cycling between stat
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system switches from State 1 to State 2. However, to ret
from State 2 to State 1,Ri must be decreased down to les
than about20.6, which istwice as far from the correspond
ing upper threshold. Anything short of this results in a ‘‘n
control’’ state of erratic cycling. This point may be of clini
cal significance if switching from State 1 to State 2 is tak
to represent an increased activity level and State 2 to Sta
is a reduction in activity. The physical analogy would be th
increased activity is less susceptible to loss of control th
the return to a reduced level of activity. This phenomen
may be clinically applicable to the occurrence of a he
attack in an individual soon after the cessation of demand
physical activity.

Another clinically relevant issue arising out of this wor
is that neural inputs and outputs arising from a hystere
system can now be assessed for cause and effect. It i
considerable interest to know just what change in neural
put results in a change in the output state, particularly wh
subthreshold inputs occur. This is a question that traditio
energy methods are not designed to answer. In the mo
presented here for expected time to switch Eq.~9!, informa-
tion relating to cause and effect is contained in the proba
ity density functionH. This function specifies a likely range
of averaging window widths which lead to a state chang
So, for example, Fig. 6 implies that switching is a result
inputs no more than about 0.15 sec into the past, with h
probability, and most likely due to inputs within about th
last 0.05 sec. In essence, the competition between averag
identifying cause and effect via the probability density fun
tion H. This holds true at both subthreshold and superthre
old levels of forcing.

VI. SUMMARY AND CONCLUSIONS

Aperiodic stochastic resonance~ASR! was used here to
describe state switching for a hysteretic system in the pr
ence of aperiodic noisy forcing. The hysteretic system w
assumed to have two stable states and there were also
dependent variables, i.e., that of the excitatory and inhibito
neural activities. The hysteresis was first reduced to one
dependent variable by expressing one forcing function
n
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terms of the second. The noisy input problem was then
scribed in terms of the noise free problem via a ‘‘competiti
between averages.’’ This occurred because of the avera
nature of the governing differential equations which ess
tially smooths the white noise input. A semianalytical mod
was developed to explain switching times in terms of t
competition between averages and the probability distri
tion governing the averaging window responsible for
switch in states was derived. Knowledge of this distributi
is clinically relevant as it may facilitate the assessment
cause and effect~this is not available with more traditiona
energy approaches!. For example, although subthresho
switching times are dependent upon both the distance
tween the mean input and the switching threshold and
input noise level, the mean averaging window size leading
switching is dependent only on the noise level. In oth
words, cause and effect, at subthreshold inputs, may be
termined solely by the noise level.

ASR was applied here to further our understanding of
effect of external noise on a densely interconnected pop
tion of inhibitory and excitatory neurons that exihibits hy
teresis. The specific application was to the intrinsic card
nervous system. ASR predicts that, in this system, exte
noise can lead to an enhancement of the regulation wh
intrinsic cardiac neurons exert on regional cardiac functi
In addition, the ASR model predicts that the relationsh
between adequate control performance and noise is de
dent on the switching state direction when the noise is hi
In fact, given an input at a fixed distance ‘‘beyond’’ a thres
old, adequate control may be realized when switching sta
in one direction but lost in the reverse direction.
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‘‘States’’ @15# ~the capital S implies an approximately consta
level is a State output analogous to State 1 or State 2 deta
in Fig. 2!. The general description of a State requires only
time t(R) to switch into that State from any State below~of
smaller steady value! or above~of greater steady value!.
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